LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Training Beam Design for Channel Estimation in Hybrid mmWave MIMO Systems

Photo by edhoradic from unsplash

Training beam design for channel estimation with infinite-resolution and low-resolution phase shifters (PSs) in hybrid analog-digital milimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems is considered in this paper. By… Click to show full abstract

Training beam design for channel estimation with infinite-resolution and low-resolution phase shifters (PSs) in hybrid analog-digital milimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems is considered in this paper. By exploiting the sparsity of mmWave channels, the optimization of the sensing matrices (corresponding to training beams) is formulated according to the compressive sensing (CS) theory. Under the condition of infinite-resolution PSs, we propose relevant algorithms to construct the sensing matrix, where the theory of convex optimization and the gradient descent in Riemannian manifold is used to design the digital and analog part, respectively. Furthermore, a block-wise alternating hybrid analog-digital algorithm is proposed to tackle the design of training beams with low-resolution PSs, where the performance degeneration caused by non-convex constant modulus and discrete phase constraints is effectively compensated to some extent thanks to the iterations among blocks. Finally, the orthogonal matching pursuit (OMP) based estimator is adopted for achieving an effective recovery of the sparse mmWave channel. Simulation results demonstrate the performance advantages of proposed algorithms compared with some existing schemes.

Keywords: beam design; design channel; channel estimation; mimo systems; design; training beam

Journal Title: IEEE Transactions on Wireless Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.