LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supervised ML Solution for Band Assignment in Dual-Band Systems with Omnidirectional and Directional Antennas

Photo from wikipedia

Many wireless networks, including 5G NR (New Radio) and future beyond 5G cellular systems, are expected to operate on multiple frequency bands. This paper considers the band assignment (BA) problem… Click to show full abstract

Many wireless networks, including 5G NR (New Radio) and future beyond 5G cellular systems, are expected to operate on multiple frequency bands. This paper considers the band assignment (BA) problem in dual-band systems, where the basestation (BS) chooses one of the two available frequency bands (centimeter-wave and millimeter-wave bands) to communicate with the user equipment (UE). While the millimeterwave band might offer higher data rate, there is a significant probability of outage during which the communication should be carried on the (more reliable) centimeter-wave band. With mobility, the BA can be perceived as a sequential problem, where the BS uses previously observed information to predict the best band for a future time step. We formulate the BA as a binary classification problem and propose supervised Machine Learning (ML) solutions. We study the problem when both the BS and the UE use (i) omnidirectional antennas and (ii) both use directional antennas. In the omnidirectional case, we derive analytical benchmark solutions based on the Gaussian Process (GP) assumption for the inter-band shadow fading. In the directional case, where the labeling is shown to be complex, we propose an efficient labeling approach based on the Viterbi Algorithm (VA). We compare the performances for two channel models: (i) a stochastic channel and (ii) a ray-tracing based channel.

Keywords: band systems; band assignment; band; directional antennas; dual band

Journal Title: IEEE Transactions on Wireless Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.