LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Partial Channel Reciprocity-Based Codebook for Wideband FDD Massive MIMO

Photo by kazaks from unsplash

The acquisition of channel state information (CSI) in Frequency Division Duplex (FDD) massive MIMO has been a formidable challenge. In this paper, we address this problem with a novel CSI… Click to show full abstract

The acquisition of channel state information (CSI) in Frequency Division Duplex (FDD) massive MIMO has been a formidable challenge. In this paper, we address this problem with a novel CSI feedback framework enabled by the partial reciprocity of uplink and downlink channels in the wideband regime. We first derive the closed-form expression of the rank of the wideband massive MIMO channel covariance matrix for a given angle-delay distribution. A low-rankness property is identified, which generalizes the well-known result of the narrow-band uniform linear array setting. Then we propose a partial channel reciprocity (PCR) codebook, inspired by the low-rankness behavior and the fact that the uplink and downlink channels have similar angle-delay distributions. Compared to the latest codebook in 5G, the proposed PCR codebook scheme achieves higher performance, lower complexity at the user side, and requires less feedback. We derive the feedback overhead necessary to achieve asymptotically error-free CSI feedback. Two low-complexity alternatives are also proposed to further reduce the complexity at the base station side. Simulations with the practical 3GPP channel model show the significant gains over the latest 5G codebook, which prove that our proposed methods are practical solutions for 5G and beyond.

Keywords: codebook; reciprocity; fdd massive; massive mimo; channel

Journal Title: IEEE Transactions on Wireless Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.