LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Partial Reciprocity-based Channel Prediction Framework for FDD Massive MIMO with High Mobility

Photo by grab from unsplash

Massive multiple-input multiple-output (MIMO) is believed to deliver unrepresented spectral efficiency gains for 5G and beyond. However, a practical challenge arises during its commercial deployment, which is known as the… Click to show full abstract

Massive multiple-input multiple-output (MIMO) is believed to deliver unrepresented spectral efficiency gains for 5G and beyond. However, a practical challenge arises during its commercial deployment, which is known as the “curse of mobility”. The performance of massive MIMO drops alarmingly when the velocity level of user increases. In this paper, we tackle the problem in frequency division duplex (FDD) massive MIMO with a novel Channel State Information (CSI) acquisition framework. A joint angle-delay-Doppler (JADD) wideband precoder is proposed for channel training. Our idea consists in the exploitation of the partial channel reciprocity of FDD and the angle-delay-Doppler channel structure. More precisely, the base station (BS) estimates the angle-delay-Doppler information of the UL channel based on UL pilots using Matrix Pencil (MP) method. It then computes the wideband JADD precoders according to the extracted parameters. Afterwards, the user estimates and feeds back some scalar coefficients for the BS to reconstruct the predicted DL channel. Asymptotic analysis shows that the CSI prediction error converges to zero when the number of BS antennas and the bandwidth increases. Numerical results with industrial channel model demonstrate that our framework can well adapt to high speed (350 km/h), large CSI delay (10 ms) and channel sample noise.

Keywords: mobility; fdd massive; framework; massive mimo; channel

Journal Title: IEEE Transactions on Wireless Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.