LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian Optimization of Queuing-Based Multichannel URLLC Scheduling

Photo from wikipedia

This paper studies the allocation of shared resources between ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband (eMBB) in the emerging 5G and beyond cellular networks. In this paper, we… Click to show full abstract

This paper studies the allocation of shared resources between ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband (eMBB) in the emerging 5G and beyond cellular networks. In this paper, we design a unique queuing mechanism for the joint eMBB/URLLC system. The aim is to flexibly schedule URLLC traffic to enhance the total eMBB throughput and the reliability of URLLC packets (i.e., the probability of not dropping URLLC packets in each mini-slot) while maintaining a satisfactory transmission latency as per the 3GPP requirements. Precisely, by deriving the steady-state probabilities of URLLC queue backlog analytically, we formulate a stochastic optimization problem to maximize the total normalized eMBB throughput and the URLLC utility. Due to the stochastic nature of the objective function, it is expensive to evaluate it for any set of inputs, and thus the Bayesian optimization is applied to obtain the optimal results of such a black-box objective function. Numerical results demonstrate that the proposed queuing mechanism never violates the latency requirement of the URLLC services but improves the reliability. It also enhances the total normalized eMBB throughput as compared to the method without queuing.

Keywords: bayesian optimization; optimization queuing; queuing based; embb; embb throughput; optimization

Journal Title: IEEE Transactions on Wireless Communications
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.