LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Erratic noise suppression using iterative structure‐oriented space‐varying median filtering with sparsity constraint

Photo by p_kuzovkova from unsplash

ABSTRACT Erratic noise often has high amplitudes and a non‐Gaussian distribution. Least‐squares–based approaches therefore are not optimal. This can be handled better with non–least‐squares approaches, for example based on Huber… Click to show full abstract

ABSTRACT Erratic noise often has high amplitudes and a non‐Gaussian distribution. Least‐squares–based approaches therefore are not optimal. This can be handled better with non–least‐squares approaches, for example based on Huber norm which is computationally expensive. An alternative method has been published which involves transforming the data with erratic noise to pseudodata that have Gaussian distributed noise. It can then be attenuated using traditional least‐squares approaches. This alternative method has previously been used in combination with a curvelet transform in an iterative scheme. In this paper, we introduce a median‐filtering step in this iterative scheme. The median filter is applied following the slope direction of the seismic data to maximally preserve the energy of useful signals. The new method can suppress stronger erratic noise compared with the previous iterative method, and can better deal with random noise compared with the single‐step implementation of the median filter. We apply the proposed robust denoising algorithm to a synthetic dataset and two field data examples and demonstrate its advantages over three different noise attenuation algorithms.

Keywords: erratic noise; least squares; median filtering; noise suppression; noise; suppression using

Journal Title: Geophysical Prospecting
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.