LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Growth‐independent cross‐feeding modifies boundaries for coexistence in a bacterial mutualism

Photo from wikipedia

Nutrient cross-feeding can stabilize microbial mutualisms, including those important for carbon cycling in nutrient-limited anaerobic environments. It remains poorly understood how nutrient limitation within natural environments impacts mutualist growth, cross-feeding… Click to show full abstract

Nutrient cross-feeding can stabilize microbial mutualisms, including those important for carbon cycling in nutrient-limited anaerobic environments. It remains poorly understood how nutrient limitation within natural environments impacts mutualist growth, cross-feeding levels and ultimately mutualism dynamics. We examined the effects of nutrient limitation within a mutualism using theoretical and experimental approaches with a synthetic anaerobic coculture pairing fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris. In this coculture, E. coli and R. palustris resemble an anaerobic food web by cross-feeding essential carbon (organic acids) and nitrogen (ammonium) respectively. Organic acid cross-feeding stemming from E. coli fermentation can continue in a growth-independent manner during nitrogen limitation, while ammonium cross-feeding by R. palustris is growth-dependent. When ammonium cross-feeding was limited, coculture trends changed yet coexistence persisted under both homogenous and heterogenous conditions. Theoretical modelling indicated that growth-independent fermentation was crucial to sustain cooperative growth under conditions of low nutrient exchange. In contrast to stabilization at most cell densities, growth-independent fermentation inhibited mutualistic growth when the E. coli cell density was adequately high relative to that of R. palustris. Thus, growth-independent fermentation can conditionally stabilize or destabilize a mutualism, indicating the potential importance of growth-independent metabolism for nutrient-limited mutualistic communities.

Keywords: fermentation; growth independent; mutualism; cross feeding; growth

Journal Title: Environmental Microbiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.