LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The molecular ecology of Microcystis sp. blooms in the San Francisco Estuary

Photo by john_cameron from unsplash

Harmful blooms of the cyanobacterium Microcystis sp. have become increasingly pervasive in the San Francisco Estuary Delta (USA) since the early 2000s and their rise has coincided with substantial decreases… Click to show full abstract

Harmful blooms of the cyanobacterium Microcystis sp. have become increasingly pervasive in the San Francisco Estuary Delta (USA) since the early 2000s and their rise has coincided with substantial decreases in several important fish species. Direct and indirect effects Microcystis blooms may have on the Delta food web were investigated. The Microcystis population was tracked for 2 years at six sites throughout the Delta using quantitative PCR. High-throughput amplicon sequencing and colony PCR sequencing revealed the presence of 10 different strains of Microcystis, including 6 different microcystin-producing strains. Shotgun metagenomic analysis identified a variety of Microcystis secondary metabolite pathways, including those for the biosynthesis of: aeruginosin, cyanopeptolin, microginin, microviridin and piricyclamide. A sizable reduction was observed in microbial community diversity during a large Microcystis bloom (H' = 0.61) relative to periods preceding (H' = 2.32) or following (H' = 3.71) the bloom. Physicochemical conditions of the water column were stable throughout the bloom period. The elevated abundance of a cyanomyophage with high similarity to previously sequenced isolates known to infect Microcystis sp. was implicated in the bloom's collapse. Network analysis was employed to elucidate synergistic and antagonistic relationships between Microcystis and other bacteria and indicated that only very few taxa were positively correlated with Microcystis.

Keywords: microcystis blooms; microcystis; molecular ecology; san francisco; ecology; francisco estuary

Journal Title: Environmental Microbiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.