LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Keystone taxa predict compositional change in microbial communities

Photo by rossfindon from unsplash

The influence of biotic interactions on microbial community assembly is intensely debated. We hypothesized that keystone taxa, which influence community assembly through strong biotic interactions, are important for regulating microbial… Click to show full abstract

The influence of biotic interactions on microbial community assembly is intensely debated. We hypothesized that keystone taxa, which influence community assembly through strong biotic interactions, are important for regulating microbial community composition. While highly connected microbes have been identified, evidence that these taxa act as keystones is lacking, because keystone status requires influence on whole-community dynamics. We address this gap, showing that small subsets of highly connected keystone taxa (generally 1%-5% of richness) can be optimal predictors of whole-community compositional change. In three long-term data sets, greater connectivity due to the presence of keystone taxa corresponded to lower compositional turnover. We further hypothesized that the influence of keystone taxa would be diminished when environmental disturbance was a strong driver of compositional change. We used two case studies of reference and disturbed communities to investigate how biotic and abiotic forces interact to shape community composition. Most of the same taxa were present in both the reference and disturbed communities, but keystone taxa had much greater explanatory power in the reference communities. Our results suggest that greater biotic connectivity arising from the presence of keystone taxa is stabilizing to community composition, and that keystone taxa can be good indicators of pending community shifts.

Keywords: taxa; community; compositional change; keystone taxa

Journal Title: Environmental Microbiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.