LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The biological role of the enigmatic C3larvinAB toxin of the honey bee pathogenic bacterium Paenibacillus larvae.

Paenibacillus larvae is the causative agent of the notifiable epizootic American foulbrood, a fatal bacterial disease of honey bee larvae. The species P. larvae has been classified into four differentially… Click to show full abstract

Paenibacillus larvae is the causative agent of the notifiable epizootic American foulbrood, a fatal bacterial disease of honey bee larvae. The species P. larvae has been classified into four differentially virulent and prevalent genotypes (ERIC I-IV), which also differ in their virulence factor equipment. Recently, a novel P. larvae toxin, the C3-like C3larvin, has been described. Genome analysis now revealed that the C3larvin gene is actually a part of a toxin locus encompassing two genes encoding a binary AB toxin with the A subunit being C3larvin (C3larvinA) and a putative B subunit (C3larvinB) encoded by the second gene. Sequence and structural analyses demonstrated that C3larvinB is a homologue of the Bacillus anthracis protective antigen (PA), the B subunit of anthrax toxin. The C3larvinAB toxin locus was interrupted by point mutations in all analysed P. larvae ERIC I and ERIC II strains. Only one P. larvae ERIC III/IV strain harboured an uninterrupted toxin locus comprising full-length genes for C3larvinA and B. Exposure bioassays did not substantiate a role as virulence factor for C3larvinAB in P. larvae ERIC I/II. However, the PA homologue C3larvinB had an influence on the virulence of the unique P. larvae strain expressing the functional C3larvinAB locus.

Keywords: c3larvinab toxin; c3larvinab; toxin; paenibacillus larvae; honey bee

Journal Title: Environmental microbiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.