Pseudomonas sp. strain SCT is capable of using iodate (IO3 - ) as a terminal electron acceptor for anaerobic respiration. A possible key enzyme, periplasmic iodate reductase (Idr), was visualized… Click to show full abstract
Pseudomonas sp. strain SCT is capable of using iodate (IO3 - ) as a terminal electron acceptor for anaerobic respiration. A possible key enzyme, periplasmic iodate reductase (Idr), was visualized by active staining on non-denaturing gel electrophoresis. Liquid chromatography-tandem mass spectrometry analysis revealed that at least four proteins, designated as IdrA, IdrB, IdrP1 , and IdrP2 , were involved in Idr. IdrA and IdrB were homologs of catalytic and electron transfer subunits of respiratory arsenite oxidase (Aio); however, IdrA defined a novel clade within the dimethylsulfoxide (DMSO) reductase family. IdrP1 and IdrP2 were closely related to each other and distantly related to cytochrome c peroxidase. The idr genes (idrABP1 P2 ) formed an operon-like structure, and their transcription was upregulated under iodate-respiring conditions. Comparative proteomic analysis also revealed that Idr proteins as well as high affinity terminal oxidases (Cbb3 and Cyd), various H2 O2 scavengers, and chlorite (ClO2 - ) dismutase-like proteins were expressed specifically or abundantly under iodate-respiring conditions. These results suggest that Idr is a respiratory iodate reductase, and that both O2 and H2 O2 are formed as by-products of iodate respiration. We propose an electron transport chain model of strain SCT, in which iodate, H2 O2 , and O2 are used as terminal electron acceptors. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.