LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Incorporating genome-based phylogeny and functional similarity into diversity assessments helps to resolve a global collection of human gut metagenomes.

Photo from wikipedia

Tree-based diversity measures incorporate phylogenetic or functional relatedness into comparisons of microbial communities. This can improve the identification of explanatory factors compared to tree-agnostic diversity measures. However, applying tree-based diversity… Click to show full abstract

Tree-based diversity measures incorporate phylogenetic or functional relatedness into comparisons of microbial communities. This can improve the identification of explanatory factors compared to tree-agnostic diversity measures. However, applying tree-based diversity measures to metagenome data is more challenging than for single-locus sequencing (e.g., 16S rRNA gene). Utilizing the Genome Taxonomy Database (GTDB) for species-level metagenome profiling allows for functional diversity measures based on genomic content or traits inferred from it. Still, it is unclear how metagenome-based assessments of microbiome diversity benefit from incorporating phylogeny or function into measures of diversity. We assessed this by measuring phylogeny-based, function-based, and tree-agnostic diversity measures from a large, global collection of human gut metagenomes composed of 30 studies and 2943 samples. We found tree-based measures to explain phenotypic variation (e.g., westernization, disease status, and gender) better or equivalent to tree-agnostic measures. Ecophylogenetic and functional diversity measures provided unique insight into how microbiome diversity was partitioned by phenotype. Tree-based measures greatly improved machine learning model performance for predicting westernization, disease status, and gender, relative to models trained solely on tree-agnostic measures. Our findings illustrate the usefulness of tree- and function-based measures for metagenomic assessments of microbial diversity, which is a fundamental component of microbiome science. This article is protected by copyright. All rights reserved.

Keywords: diversity; tree agnostic; global collection; tree based; diversity measures; collection human

Journal Title: Environmental microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.