LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genotypic and Phenotypic Characterisation of Hydrogenotrophic Denitrifiers.

Photo by ries_bosch from unsplash

Stimulating litho-autotrophic denitrification in aquifers with hydrogen is a promising strategy to remove excess NO3 - , but it often entails accumulation of the cytotoxic intermediate NO2 - and the… Click to show full abstract

Stimulating litho-autotrophic denitrification in aquifers with hydrogen is a promising strategy to remove excess NO3 - , but it often entails accumulation of the cytotoxic intermediate NO2 - and the greenhouse gas N2 O. To explore if these high NO2 - and N2 O concentrations are caused by differences in the genomic composition, the regulation of gene transcription or the kinetics of the reductases involved, we isolated hydrogenotrophic denitrifiers from a polluted aquifer, performed whole genome sequencing and investigated their phenotypes. We therefore assessed the kinetics of NO2 - , NO, N2 O, N2 and O2 as they depleted O2 and transitioned to denitrification with nitrate as the only electron acceptor and hydrogen as the electron donor. Isolates with a complete denitrification pathway, although differing intermediate accumulation, were closely related to Dechloromonas denitrificans, Ferribacterium limneticum or Hydrogenophaga taeniospiralis. High NO2 - accumulation was associated with the reductases' kinetics. While available, electrons only flowed towards NO3 - in the narG-containing H. taeniospiralis but flowed concurrently to all denitrification intermediates in the napA-containing D. denitrificans and F. limneticum. The denitrification regulator RegAB, present in the napA strains, may further secure low intermediate accumulation. High N2 O accumulation only occurred during the transition to denitrification and is thus likely caused by delayed N2 O reductase expression. This article is protected by copyright. All rights reserved.

Keywords: hydrogenotrophic denitrifiers; genotypic phenotypic; accumulation; characterisation hydrogenotrophic; phenotypic characterisation; denitrification

Journal Title: Environmental microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.