LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anaerobic sulfamethoxazole-degrading bacterial consortia in antibiotic-contaminated wetland sediments identified by DNA-stable isotope probing and metagenomics analysis.

Photo by nci from unsplash

Anaerobic degradation has been demonstrated as an important pathway for the removal of sulfonamide (SA) in contaminated environments, and identifying the microorganisms responsible for the degradation of SA is a… Click to show full abstract

Anaerobic degradation has been demonstrated as an important pathway for the removal of sulfonamide (SA) in contaminated environments, and identifying the microorganisms responsible for the degradation of SA is a key step in developing bioaugmentation approaches. In this study, we investigated the anaerobic degradation activity of three SA [sulfadiazine (SDZ), sulfamethazine (SMZ) and sulfamethoxazole (SMX)] and the associated bacterial community in wetland sediments contaminated by aquaculture (in Fujian Province, coded with FJ), livestock farming (in Sichuan Province, coded with SC), or rural wastewaters (in Guangdong Province, coded with GD). Additionally, the combination of DNA-stable isotope probing (SIP) with metagenomics was further applied to assess the active SA-degrading microbes using SMX as a model SA. Among SDZ, SMZ and SMX, only SMX could be effectively dissipated, and the degradation of SMX was relatively fast in the microcosms of sediments with higher levels of SA contamination (FJ and SC). The anaerobic biotransformation pathway of SMX was initiated by hydrogenation with the cleavage of the N-O bond on the isoxazole ring. DNA-SIP revealed that the in situ active anaerobic SMX-degraders (5, 18 and 3 genera in sediments FJ, SC and GD respectively) were dominated by Proteobacteria in sediments FJ and SC, but by Firmicutes (two Family XVIII members) in sediment GD. Mycobacterium, unclassified Burkholderiaceae and Rhodocyclaceae were identified as the dominant active SMX-degrading bacteria in both sediments FJ and SC. Higher proportions of antibiotic resistance gene and genes involved in various functional categories were observed in sediments FJ and SC.

Keywords: stable isotope; dna; smx; wetland sediments; dna stable; isotope probing

Journal Title: Environmental microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.