LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resource availability drives bacteria community resistance to pathogen invasion via altering bacterial pairwise interactions.

Photo from wikipedia

Microbial interactions within resident communities are a major determinant of resistance to pathogen invasion. Yet, interactions vary with environmental conditions, raising the question of how community composition and environments interactively… Click to show full abstract

Microbial interactions within resident communities are a major determinant of resistance to pathogen invasion. Yet, interactions vary with environmental conditions, raising the question of how community composition and environments interactively shape invasion resistance. Here we use Resource Availability (RA) as model parameter altering resistance of model bacterial communities to invasion by the plant pathogenic bacterium Ralstonia solanacearum. We found that at high RA, interactions between resident bacterial species were mainly driven by the direct antagonism, in terms of the means of invader inhibition. Consequently, the competitive resident communities with a higher production of antibacterial were invaded to a lesser degree than facilitative communities. At low RA, bacteria produced little direct antagonist potential, but facilitative communities reached a relatively higher community productivity, which showed higher resistance to pathogen invasion than competitive communities with lower productivities. This framework may lay the basis to understand complex microbial interactions and biological invasion as modulated by the dynamic changes of environmental resource availability. This article is protected by copyright. All rights reserved.

Keywords: pathogen invasion; resistance; invasion; resource availability; resistance pathogen

Journal Title: Environmental microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.