LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimate of the degradation potentials of cellulose, xylan, and chitin across global prokaryotic communities.

Photo by zero_arw from unsplash

Complex polysaccharides (e.g., cellulose, xylan, and chitin), the most abundant renewable biomass resources available on Earth, are mainly degraded by microorganisms in nature. However, little is known about the global… Click to show full abstract

Complex polysaccharides (e.g., cellulose, xylan, and chitin), the most abundant renewable biomass resources available on Earth, are mainly degraded by microorganisms in nature. However, little is known about the global distribution of the enzymes and microorganisms responsible for the degradation of cellulose, xylan, and chitin in natural environments. Through large-scale alignments between the sequences released by the Earth Microbiome Project and sequenced prokaryotic genomes, we determined that almost all prokaryotic communities have the functional potentials to degrade cellulose, xylan, and chitin. The median abundances of genes encoding putative cellulases, xylanases, and chitinases in global prokaryotic communities are 0.51 (0.17-1.01), 0.24 (0.05-0.57), and 0.33 (0.11-0.71) genes/cell, respectively, and the composition and abundance of these enzyme systems are environmentally varied. The taxonomic sources of the three enzymes are highly diverse within prokaryotic communities, and the main factor influencing the diversity is the community's alpha diversity index rather than gene abundance. Moreover, there are obvious differences in taxonomic sources among different communities, and most genera with degradation potentials are narrowly distributed. In conclusion, our analysis preliminarily depicts a panorama of cellulose-, xylan-, and chitin-degrading enzymatic systems across global prokaryotic communities.

Keywords: xylan chitin; global prokaryotic; prokaryotic communities; degradation; cellulose xylan

Journal Title: Environmental microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.