LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular detection and characterization of foodborne bacteria: Recent progresses and remaining challenges.

Photo from wikipedia

The global food demand is expected to increase in the coming years, along with challenges around climate change and food security. Concomitantly, food safety risks, particularly those related to bacterial… Click to show full abstract

The global food demand is expected to increase in the coming years, along with challenges around climate change and food security. Concomitantly, food safety risks, particularly those related to bacterial pathogens, may also increase. Thus, the food sector needs to innovate to rise to this challenge. Here, we discuss recent advancements in molecular techniques that can be deployed within various foodborne bacteria surveillance systems across food settings. To start with, we provide updates on nucleic acid-based detection, with a focus on polymerase chain reaction (PCR)-based technologies and loop-mediated isothermal amplification (LAMP). These include descriptions of novel genetic markers for several foodborne bacteria and progresses in multiplex PCR and droplet digital PCR. The next section provides an overview of the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins systems, such as CRISPR-Cas9, CRISPR-Cas12a, and CRISPR-Cas13a, as tools for enhanced sensitive and specific detection of foodborne pathogens. The final section describes utilizations of whole genome sequencing for accurate characterization of foodborne bacteria, ranging from epidemiological surveillance to model-based predictions of bacterial phenotypic traits through genome-wide association studies or machine learning.

Keywords: food; detection; characterization foodborne; foodborne bacteria

Journal Title: Comprehensive reviews in food science and food safety
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.