With three‐dimensional (3D) laser scanning technology and software packages, the practice of documenting and measuring bullet trajectories has benefited from greater accuracy and reproducibility. This study investigated the accuracy and… Click to show full abstract
With three‐dimensional (3D) laser scanning technology and software packages, the practice of documenting and measuring bullet trajectories has benefited from greater accuracy and reproducibility. This study investigated the accuracy and reproducibility of the bullet trajectory tools in the software package, FARO Zone 3D (FZ3D). Twelve participants were provided laser scanner data for 21 bullet trajectories on drywall panels with impact angles between 25° and 90°. When the impact plane was manually aligned by the operator, 75% of the absolute errors were within 0.91° and 0.98° for the azimuth and vertical angles, respectively. The vertical angle improved to 0.47° when impact plane alignment was taken with respect to gravity (no operator influence). Thus, manual alignment is shown to be subject to greater error than alignment with gravity. However, this study shows that the accuracy and reproducibility of the FZ3D bullet trajectory tools to be comparable with previous research studies.
               
Click one of the above tabs to view related content.