Application of an aqueous two-phase system (ATPS) coupled with ultrasonic technology for the extraction of phloridzin from Malus micromalus Makino was evaluated and optimized by response surface methodology (RSM). The… Click to show full abstract
Application of an aqueous two-phase system (ATPS) coupled with ultrasonic technology for the extraction of phloridzin from Malus micromalus Makino was evaluated and optimized by response surface methodology (RSM). The ethanol/ammonium sulfate ATPS was selected for detailed investigation, including the phase diagram, effect of phase composition and extract conditions on the partition of phloridzin, and the recycling of ammonium sulfate. In addition, the evaluation of extraction efficiency and the identification of phloridzin were investigated. The optimal partition coefficient (6.55) and recovery (92.86%) of phloridzin were obtained in a system composed of 35% ethanol (w/w) and 16% (NH4 )2 SO4 (w/w), 51:1 liquid-to-solid ratio, and extraction temperature of 36 °C. Comparing with the traditional solvent extraction with respective 35% and 80% ethanol, ultrasonic-assisted aqueous two-phase extraction (UAATPE) strategy had significant advantages with lower ethanol consumption, less impurity of sugar and protein, and higher extracting efficiency of phloridzin. Our result indicated that UAATPE was a valuable method for the extraction and preliminary purification of phloridzin from the fruit of Malus micromalus Makino, which has great potential in the deep processing of Malus micromalus Makino industry to increase these fruits' additional value and drive the local economic development.
               
Click one of the above tabs to view related content.