Ellagic acid (EA) has demonstrated several biological properties, such as antioxidant, antimicrobial, and enzymatic inhibition. Zein and chitosan (CHI) are natural polymers whose biological potential has also gained attention. Therefore,… Click to show full abstract
Ellagic acid (EA) has demonstrated several biological properties, such as antioxidant, antimicrobial, and enzymatic inhibition. Zein and chitosan (CHI) are natural polymers whose biological potential has also gained attention. Therefore, this paper aimed to evaluate the antimicrobial, antioxidant, anticollagenase, and antielastase properties of EA, zein, and chitosan isolated or in combination. The microdilution method was used to assess the minimum inhibitory and bactericide concentrations. The antioxidant activity was determined using the 2,2-diphenyl-1-picryl-hydrazila free radical scavenging method. The anticollagenase and antielastase activities were evaluated by specific colorimetric tests. EA has shown inhibitory activity against Staphylococcus aureus and Pseudomonas aeruginosa together with an antioxidant IC50 of 0.079 mg/mL. EA also showed significant collagenase and elastase inhibition. Zein has shown antimicrobial and antioxidant activities itself and enhanced sinergically the antioxidant activity and the antimicrobial activity against P. aeruginosa when combined with EA. CHI increased sinergically the inhibitory activity of EA against both bacterial strains, while showed itself an acceptable antimicrobial activity. 1 H saturation transfer-difference nuclear magnetic resonance experiment confirmed the formation of a complex between EA and zein that could be related with the improvement on its biological performance over the individual compounds, while no chemical interaction was detected between CHI and EA. PRACTICAL APPLICATION: The results reinforce the potential of ellagic acid in combination with zein and/or chitosan as an antimicrobial, antienzimatic, and antioxidant agent. Those findings reinforce the use of these substances, protecting this bioactive from degradation and/or improving the functional characteristics and biopharmaceutical properties.
               
Click one of the above tabs to view related content.