LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rheological properties of Sesbania cannabina galactomannan as a new source of thickening agent.

Photo by robertbye from unsplash

The present study evaluated the rheological properties of galactomannan from Sesbania cannabina. The intrinsic viscosity of galactomannan was determined to be 8.63 ± 0.06 dl/g. Moreover, the onset of galactomannan coil… Click to show full abstract

The present study evaluated the rheological properties of galactomannan from Sesbania cannabina. The intrinsic viscosity of galactomannan was determined to be 8.63 ± 0.06 dl/g. Moreover, the onset of galactomannan coil overlap occurred at 5.12 ± 0.13 g/L. With increasing concentration, galactomannan showed a more distinct shear-thinning behavior, which was well characterized by the Cross model. Notably, the viscosity of polysaccharide showed a negative relationship with the temperature, while the activation energy decreased with increasing polysaccharide concentration. Furthermore, at high concentrations, the galactomannan solution showed stability after heating or freezing, as well as over the wide pH range of 5.0-9.0. Dynamic viscoelasticity measurements reveal a gradual transition from viscous to elastic behavior of galactomannans with an increasing frequency. It is anticipated that S. cannabina galactomannan will find interesting applications as a natural thickener due to the comprehensive description of its rheological properties presented herein. PRACTICAL APPLICATION: The investigated S. cannabina galactomannan has shown a higher viscosity and heat stability at high concentration, as well as a good stability at the pH range of 5-9. The S. cannabina galactomannan may be employed as stabilizers in the food field.

Keywords: rheological properties; cannabina galactomannan; galactomannan new; galactomannan; properties sesbania; sesbania cannabina

Journal Title: Journal of food science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.