LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gluten-starch interface characteristics and wheat dough rheology-Insights from hybrid artificial systems.

Photo by priscilladupreez from unsplash

Referring to the total surface existing in wheat dough, gluten-starch interfaces are a major component. However, their impact on dough rheology is largely unclear. Common viewpoints, based on starch surface… Click to show full abstract

Referring to the total surface existing in wheat dough, gluten-starch interfaces are a major component. However, their impact on dough rheology is largely unclear. Common viewpoints, based on starch surface modifications or reconstitution experiments, failed to show unambiguous relations of interface characteristics and dough rheology. Observing hybrid artificial dough systems with defined particle surface functionalization gives a new perspective. Since surface functionalization standardizes particle-polymer interfaces, the impact on rheology becomes clearly transferable and thus, contributes to a better understanding of gluten-starch interfaces. Based on this perspective, the effect of particle/starch surface functionality is discussed in relation to the rheological properties of natural wheat dough and modified gluten-starch systems. A competitive relation of starch and gluten for intermolecular interactions with the network-forming polymer becomes apparent during network development by adsorption phenomena. This gluten-starch adhesiveness delays the beginning of non-linearity under large deformations, thus contributing to a high deformability of dough. Consequently, starch surface functionality affects the mechanical properties, starting from network formation and ending with the thermal fixation of structure.

Keywords: rheology; interface characteristics; wheat dough; surface; dough rheology; gluten starch

Journal Title: Journal of food science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.