LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of autoclave-cooling cycles combined pullulanase on the physicochemical and structural properties of resistant starch from black Tartary buckwheat.

Photo by kirp from unsplash

A starch-rich portion is produced as a by-product of black Tartary buckwheat processing. The effect of enzymatic combined with autoclaving-cooling cycles (one, two, or three times) on the physicochemical and… Click to show full abstract

A starch-rich portion is produced as a by-product of black Tartary buckwheat processing. The effect of enzymatic combined with autoclaving-cooling cycles (one, two, or three times) on the physicochemical and structural properties of black Tartary buckwheat type 3 resistant starch (BRS) was evaluated. The autoclaving-cooling cycles enhanced solubility and reduced swelling, with the BRS content increasing from 14.12% to 25.18%. The high crystallinity of the BRS reflected a high molecular order. However, increasing the number of autoclaving-cooling cycles did not result in higher BRS content. The highest BRS yield in the autoclaved starch samples was 25.18% after double-autoclaving-cooling cycles. Furthermore, the autoclaving-cooling cycles altered the crystalline structure of black Tartary buckwheat, and the subsequent crystallinity changed from 36.33% to 42.05% to 38.27%. Fourier-transform infrared spectroscopy shows that the number of cycles results in more efficient double-helical packing within the crystalline lamella. Principal component analysis showed that the autoclaving-cooling cycle treatment leads to significant changes in the molecular structure of resistant starch (RS). These results indicated that autoclaving-cooling cycles might be a feasible way for producing RS from black Tartary buckwheat starch with better structural stability to expand their application range.

Keywords: autoclaving cooling; black tartary; tartary buckwheat; cooling cycles; resistant starch

Journal Title: Journal of food science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.