Bimetallic nanoparticle catalysts have attracted considerable attention due to their unique chemical and physical properties. The ability of metal-reducing bacteria to produce highly catalytically active monometallic nanoparticles is well known;… Click to show full abstract
Bimetallic nanoparticle catalysts have attracted considerable attention due to their unique chemical and physical properties. The ability of metal-reducing bacteria to produce highly catalytically active monometallic nanoparticles is well known; however, the properties and catalytic activity of bimetallic nanoparticles synthesized with these organisms is not well understood. Here, we report the one-pot biosynthesis of Pd/Ag (bio-Pd/Ag) and Pd/Au (bio-Pd/Au) nanoparticles using the metal-reducing bacterium, Shewanella oneidensis, under mild conditions. Energy dispersive X-ray analyses performed using scanning transmission electron microscopy (STEM) revealed the presence of both metals (Pd/Ag or Pd/Au) in the biosynthesized nanoparticles. X-ray absorption near-edge spectroscopy (XANES) suggested a significant contribution from Pd(0) and Pd(II) in both bio-Pd/Ag and bio-Pd/Au, with Ag and Au existing predominately as their metallic forms. Extended X-ray absorption fine-structure spectroscopy (EXAFS) supported the presence of multiple Pd species in bio-Pd/Ag and bio-Pd/Au, as inferred from Pd-Pd, Pd-O and Pd-S shells. Both bio-Pd/Ag and bio-Pd/Au demonstrated greatly enhanced catalytic activity towards Suzuki-Miyaura cross-coupling compared to a monometallic Pd catalyst, with bio-Pd/Ag significantly outperforming the others. The catalysts were very versatile, tolerating a wide range of substituents. This work demonstrates a green synthesis method for novel bimetallic nanoparticles that display significantly enhanced catalytic activity compared to their monometallic counterparts.
               
Click one of the above tabs to view related content.