LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production of xylitol by Saccharomyces cerevisiae using waste xylose mother liquor and corncob residues

Photo by jknorman714 from unsplash

Exorbitant outputs of waste xylose mother liquor (WXML) and corncob residue from commercial‐scale production of xylitol create environmental problems. To reduce the wastes, a Saccharomyces cerevisiae strain tolerant to WXML… Click to show full abstract

Exorbitant outputs of waste xylose mother liquor (WXML) and corncob residue from commercial‐scale production of xylitol create environmental problems. To reduce the wastes, a Saccharomyces cerevisiae strain tolerant to WXML was conferred with abilities to express the genes of xylose reductase, a xylose‐specific transporter and enzymes of the pentose phosphate pathway. This strain showed a high capacity to produce xylitol from xylose in WXML with glucose as a co‐substrate. Additionally, a simultaneous saccharification and fermentation (SSF) process was designed to use corncob residues and cellulase instead of directly adding glucose as a co‐substrate. Xylitol titer and the productivity were, respectively, 91.0 g l‐1 and 1.26 ± 0.01 g l‐1 h‐1 using 20% WXML, 55 g DCW l‐1 delignified corncob residues and 11.8 FPU gcellulose‐1 cellulase at 35° during fermentation. This work demonstrates the promising strategy of SSF to exploit waste products to xylitol fermentation process.

Keywords: xylitol; corncob; xylose mother; waste xylose; corncob residues; mother liquor

Journal Title: Microbial Biotechnology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.