LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Overexpression of miR‐22 attenuates oxidative stress injury in diabetic cardiomyopathy via Sirt 1

Photo from wikipedia

BACKGROUND/AIMS Oxidative stress injury is believed to be important in diabetic cardiomyopathy. Recent evidence indicates that miR-22 plays an important role in various cardiovascular diseases, but the protective role of… Click to show full abstract

BACKGROUND/AIMS Oxidative stress injury is believed to be important in diabetic cardiomyopathy. Recent evidence indicates that miR-22 plays an important role in various cardiovascular diseases, but the protective role of miR-22 in diabetic cardiomyopathy remains undetermined. METHODS Diabetes was induced in male C57BL/6 mice by intraperitoneal injection with streptozotocin combined with a high-fat diet, and miR-22 was overexpressed following transfection with adeno-associated virus. Cardiac function was assessed by echocardiography and a cardiac catheter system. In vitro study, H9c2 cells were treated with normal or high glucose (HG), and cell viability or apoptosis was detected using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Reactive oxygen species, malondialdehyde, and superoxide dismutase were also detected in diabetic mice and H9c2 cells. The expression level of miR-22 was detected by real-time PCR. The protein expression of Sirt 1, oxidative stress injury-related proteins (GRP78, CHOP, ATF 3), and apoptosis-related proteins Bax/Bcl-2, cl-casp-9/casp-9, and cl-casp-3/casp-3 were determined by Western blotting analysis. RESULTS HG-induced oxidative stress injury and apoptosis were observed in H9c2 cells, which were ameliorated by miR-22. Cardiac dysfunction and severely altered heart structure were also observed in diabetic mice and were dramatically reversed by overexpression of miR-22. The expression of Sirt 1 decreased significantly in diabetic mice and HG-treated H9c2 cells. Overexpression of miR-22 restored the level of Sirt 1. Bioinformatics analysis predicted that Sirt 1 was a potential target gene of miR-22. Luciferase reporter assay verified that miR-22 promoted Sirt 1 expression by direct binding to the Sirt 1 3'untranslated repeats. Upregulation of Sirt 1 could improve cell viability and attenuate oxidative stress injury and apoptosis in the HG-treated H9c2 cells, similar to the effect of miR-22. However, the protective effects of miR-22 against HG-induced oxidative stress injury and apoptosis were abrogated by knockdown of Sirt 1. CONCLUSIONS Overexpression of miR-22 can attenuate oxidative stress injury in diabetic cardiomyopathy by upregulation of Sirt 1 in vivo and in vitro.

Keywords: oxidative stress; stress injury; mir; sirt

Journal Title: Cardiovascular Therapeutics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.