LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogenotrophic methanogenesis is the dominant methanogenic pathway in neotropical tank bromeliad wetlands

Photo by kellysikkema from unsplash

Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that emits substantial amounts of CH4 . Tank bromeliads growing in the forest canopy (functional… Click to show full abstract

Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that emits substantial amounts of CH4 . Tank bromeliads growing in the forest canopy (functional type-II tank bromeliads) were found to emit more CH4 than tank bromeliads growing on the forest floor (functional type-I tank bromeliads) but the reasons for this difference and the underlying microbial CH4 -cycling processes have not been studied. Therefore, we characterized archaeal communities in bromeliad tanks of the two different functional types in a neotropical montane forest of southern Ecuador using terminal-restriction fragment length polymorphism (T-RFLP) and performed tank-slurry incubations to measure CH4 production potential, stable carbon isotope fractionation and pathway of CH4 formation. The archaeal community composition was dominated by methanogens and differed between bromeliad functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens and hydrogenotrophic methanogenesis was the dominant methanogenic pathway among all bromeliads. The relative abundance of aceticlastic Methanosaetaceae and the relative contribution of aceticlastic methanogenesis increased in type-I tank bromeliads probably due to more oxic conditions in type-I than in type-II bromeliads leading to the previously observed lower in situ CH4 emissions from type-I tank bromeliads but to higher CH4 production potentials in type-I tank bromeliad slurries.

Keywords: type tank; tank; tank bromeliads; methanogenesis dominant; hydrogenotrophic methanogenesis

Journal Title: Environmental Microbiology Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.