Unanticipated difficult laryngoscopy is associated with serious airway‐related complications. We aimed to develop and test a convolutional neural network‐based deep‐learning model that uses lateral cervical spine radiographs to predict Cormack–Lehane… Click to show full abstract
Unanticipated difficult laryngoscopy is associated with serious airway‐related complications. We aimed to develop and test a convolutional neural network‐based deep‐learning model that uses lateral cervical spine radiographs to predict Cormack–Lehane grade 3 or 4 direct laryngoscopy views of the glottis. We analysed the radiographs of 5939 thyroid surgery patients at our hospital, 253 (4%) of whom had grade 3 or 4 glottic views. We used 10 randomly sampled datasets to train a model. We compared the new model with six similar models (VGG, ResNet, Xception, ResNext, DenseNet and SENet). The Brier score (95%CI) of the new model, 0.023 (0.021–0.025), was lower (‘better’) than the other models: VGG, 0.034 (0.034–0.035); ResNet, 0.033 (0.033–0.035); Xception, 0.032 (0.031–0.033); ResNext, 0.033 (0.032–0.033); DenseNet, 0.030 (0.029–0.032); SENet, 0.031 (0.029–0.032), all p < 0.001. We calculated mean (95%CI) of the new model for: R2, 0.428 (0.388–0.468); mean squared error, 0.023 (0.021–0.025); mean absolute error, 0.048 (0.046–0.049); balanced accuracy, 0.713 (0.684–0.742); and area under the receiver operating characteristic curve, 0.965 (0.962–0.969). Radiographic features around the hyoid bone, pharynx and cervical spine were associated with grade 3 and 4 glottic views.
               
Click one of the above tabs to view related content.