LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient and robust approaches for analysis of sequential multiple assignment randomized trials: Illustration using the ADAPT-R trial.

Photo by dylan_nolte from unsplash

Personalized intervention strategies, in particular those that modify treatment based on a participant's own response, are a core component of precision medicine approaches. Sequential multiple assignment randomized trials (SMARTs) are… Click to show full abstract

Personalized intervention strategies, in particular those that modify treatment based on a participant's own response, are a core component of precision medicine approaches. Sequential multiple assignment randomized trials (SMARTs) are growing in popularity and are specifically designed to facilitate the evaluation of sequential adaptive strategies, in particular those embedded within the SMART. Advances in efficient estimation approaches that are able to incorporate machine learning while retaining valid inference can allow for more precise estimates of the effectiveness of these embedded regimes. However, to the best of our knowledge, such approaches have not yet been applied as the primary analysis in SMART trials. In this paper, we present a robust and efficient approach using targeted maximum likelihood estimation (TMLE) for estimating and contrasting expected outcomes under the dynamic regimes embedded in a SMART, together with generating simultaneous confidence intervals for the resulting estimates. We contrast this method with two alternatives (G-computation and inverse probability weighting estimators). The precision gains and robust inference achievable through the use of TMLE to evaluate the effects of embedded regimes are illustrated using both outcome-blind simulations and a real-data analysis from the Adaptive Strategies for Preventing and Treating Lapses of Retention in Human Immunodeficiency Virus (HIV) Care (ADAPT-R) trial (NCT02338739), a SMART with a primary aim of identifying strategies to improve retention in HIV care among people living with HIV in sub-Saharan Africa.

Keywords: sequential multiple; adapt trial; assignment randomized; multiple assignment; randomized trials

Journal Title: Biometrics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.