Fungal infections cause serious problems in many aspects of human life, in particular infections in immunocompromised patients represent serious problems. Current antifungal antibiotics target various metabolic pathways, predominantly the cell… Click to show full abstract
Fungal infections cause serious problems in many aspects of human life, in particular infections in immunocompromised patients represent serious problems. Current antifungal antibiotics target various metabolic pathways, predominantly the cell wall or cellular membrane. Numerous compounds are available to combat fungal infections, but their efficacy is far from being satisfactory and some of them display high toxicity. The emerging resistance represents a serious issue as well; hence, there is a considerable need for new anti-fungal compounds with lower toxicity and higher effectiveness. One of the unique antifungal antibiotics is sordarin, the only known compound that acts on the fungal translational machinery per se. Sordarin inhibits protein synthesis at the elongation step of the translational cycle, acting on eukaryotic translation elongation factor 2. In this review, we intend to deliver a robust scientific platform promoting the development of antifungal compounds, in particular focusing on the molecular action of sordarin.
               
Click one of the above tabs to view related content.