LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High glucose‐ROS conditions enhance the progression in cholangiocarcinoma via upregulation of MAN2A2 and CHD8

Photo by martindorsch from unsplash

Diabetes is a major risk factor in the development and progression of several cancers including cholangiocarcinoma (CCA). However, the molecular mechanism by which hyperglycemia potentiates progression of CCA is not… Click to show full abstract

Diabetes is a major risk factor in the development and progression of several cancers including cholangiocarcinoma (CCA). However, the molecular mechanism by which hyperglycemia potentiates progression of CCA is not clearly understood. Here, we showed that a high glucose condition significantly increased reactive oxygen species (ROS) production and promoted aggressive phenotypes of CCA cells, including proliferation and migration activities. Mannosidase alpha class 2a member 2 (MAN2A2), was upregulated at both mRNA and protein levels in a high glucose‐ and ROS‐dependent manner. In addition, cell proliferation and migration were significantly reduced by MAN2A2 knockdown. Based on our proteome and in silico analyses, we further found that chromodomain helicase DNA‐binding protein 8 (CHD8) was induced by ROS signaling and regulated MAN2A2 expression. Overexpression of CHD8 increased MAN2A2 expression, while CHD8 knockdown dramatically reduced proliferation and migration as well as MAN2A2 expression in CCA cells. Moreover, both MAN2A2 and CHD8 were highly expressed with positive correlation in CCA tumor tissues. Collectively, these data suggested that high glucose conditions promote CCA progression through ROS‐mediated upregulation of MAN2A2 and CHD8. Thus, glucose metabolism is a promising therapeutic target to control tumor progression in patients with CCA and diabetes.

Keywords: man2a2 chd8; high glucose; chd8; progression; glucose ros

Journal Title: Cancer Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.