LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disorders of histone methylation: Molecular basis and clinical syndromes

Photo from wikipedia

Epigenetic modifications of DNA and histone tails are essential for gene expression regulation. They play an essential role in neurodevelopment as nervous system development is a complex process requiring a… Click to show full abstract

Epigenetic modifications of DNA and histone tails are essential for gene expression regulation. They play an essential role in neurodevelopment as nervous system development is a complex process requiring a dynamic pattern of gene expression. Histone methylation is one of the vital epigenetic regulators and mostly occurs on lysine residues of histones H3 and H4. Histone methylation is catalyzed by two sets of enzymes: histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). KMT2 enzymes form a distinct multiā€subunit complex known as COMPASS to enhance their catalytic activity and diversify their biologic functions. Several neurodevelopmental syndromes result from defects in histone methylation which can be caused by deficiencies in histone methyltransferases and demethylases, loss of the histone methyltransferase activator TASP1, or derangements in COMPASS formation. In this review article, the molecular mechanism of histone methylation is discussed followed by summarizing clinical syndromes caused by monogenic defects in histone methylation.

Keywords: methylation; histone methylation; clinical syndromes; disorders histone; methylation molecular

Journal Title: Clinical Genetics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.