LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of perforated demineralized dentin scaffold on bone regeneration in critical‐size sheep iliac defects

Photo from wikipedia

OBJECTIVES Regenerating critical-size bone injury is a major problem that continues to inspire the design of new graft materials. Therefore, tissue engineering has become a novel approach for targeting bone… Click to show full abstract

OBJECTIVES Regenerating critical-size bone injury is a major problem that continues to inspire the design of new graft materials. Therefore, tissue engineering has become a novel approach for targeting bone regeneration applications. Human teeth are a rich source of stem cells, matrix, trace metal ions, and growth factors. A vital tooth-derived demineralized dentin matrix is acid-insoluble and composed of cross-linked collagen with growth factors. In this study, we recycled human non-functional tooth into a unique geometric dentin scaffold, entitled perforated root-demineralized dentin matrix (PR-DDM). The aim of this study was to evaluate the feasibility of PR-DDM as the scaffold for regenerating bone in critical-size iliac defects. MATERIAL AND METHODS Artificial macro-pores (1 mm in diameter) were added to human vital wisdom tooth after removing the enamel and pulp portions. The modified tooth was demineralized in 0.34 N HNO3 for 30 min and is referred to as PR-DDM scaffold. Critical-size defect (10 mm × 15 mm × 9 mm Ø) was created in the iliac crest of six adult sheep. The in vivo bone regeneration by the scaffold was evaluated by micro-CT, 3D micro-CT, and histological examination at 2 and 4 months post-implantation. RESULTS PR-DDM exhibited better bone ingrowth, especially in the artificial macro-pores. The results of micro-CT and 3D micro-CT revealed good union between scaffold and native bone. New bone formation was observed in almost all portions of PR-DDM. Higher bone volume inside the scaffold was detected at 4 months compared with 2 months. New bone ingrowth was ankylosed with PR-DDM, and both osteoinduction and osteoconduction capability of PR-DDM were confirmed histologically. The ratio of new bone formation was higher at 4 months compared with 2 months by histomorphometric analysis. CONCLUSIONS Altogether, these results demonstrated that the human tooth-derived graft material with a unique geometric structure, PR-DDM, contributed to active bone ingrowth in critical-size bone defects. This novel scaffold may have great utility in the near-future clinical application.

Keywords: critical size; bone; demineralized dentin; bone regeneration

Journal Title: Clinical Oral Implants Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.