LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using genetically encoded heme sensors to probe the mechanisms of heme uptake and homeostasis in Candida albicans

Photo from wikipedia

Candida albicans is a major fungal pathogen that can utilise hemin and haemoglobin as iron sources in the iron‐scarce host environment. While C. albicans is a heme prototroph, we show… Click to show full abstract

Candida albicans is a major fungal pathogen that can utilise hemin and haemoglobin as iron sources in the iron‐scarce host environment. While C. albicans is a heme prototroph, we show here that it can also efficiently utilise external heme as a cellular heme source. Using genetically encoded ratiometric fluorescent heme sensors, we show that heme extracted from haemoglobin and free hemin enter the cells with different kinetics. Heme supplied as haemoglobin is taken up via the Common in Fungal Extracellular Membrane (CFEM) hemophore cascade, and reaches the cytoplasm over several hours, whereas entry of free hemin via CFEM‐dependent and independent pathways is much faster, less than an hour. To prevent an influx of extracellular heme from reaching toxic levels in the cytoplasm, the cells deploy Hmx1, a heme oxygenase. Hmx1 was previously suggested to be involved in utilisation of haemoglobin and hemin as iron sources, but we find that it is primarily required to prevent heme toxicity. Taken together, the combination of novel heme sensors with genetic analysis revealed new details of the fungal mechanisms of heme import and homeostasis, necessary to balance the uses of heme as essential cofactor and potential iron source against its toxicity.

Keywords: heme; genetically encoded; mechanisms heme; candida albicans; heme sensors; using genetically

Journal Title: Cellular Microbiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.