LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The problem of estimating recent genetic connectivity in a changing world

Photo by kellysikkema from unsplash

Accurate understanding of population connectivity is important to conservation because dispersal can play an important role in population dynamics, microevolution, and assessments of extirpation risk and population rescue. Genetic methods… Click to show full abstract

Accurate understanding of population connectivity is important to conservation because dispersal can play an important role in population dynamics, microevolution, and assessments of extirpation risk and population rescue. Genetic methods are increasingly used to infer population connectivity because advances in technology have made them more advantageous (e.g., cost effective) relative to ecological methods. Given the reductions in wildlife population connectivity since the Industrial Revolution and more recent drastic reductions from habitat loss, it is important to know the accuracy of and biases in genetic connectivity estimators when connectivity has declined recently. Using simulated data, we investigated the accuracy and bias of 2 common estimators of migration (movement of individuals among populations) rate. We focused on the timing of the connectivity change and the magnitude of that change on the estimates of migration by using a coalescent-based method (Migrate-n) and a disequilibrium-based method (BayesAss). Contrary to expectations, when historically high connectivity had declined recently: (i) both methods over-estimated recent migration rates; (ii) the coalescent-based method (Migrate-n) provided better estimates of recent migration rate than the disequilibrium-based method (BayesAss); (iii) the coalescent-based method did not accurately reflect long-term genetic connectivity. Overall, our results highlight the problems with comparing coalescent and disequilibrium estimates to make inferences about the effects of recent landscape change on genetic connectivity among populations. We found that contrasting these 2 estimates to make inferences about genetic-connectivity changes over time could lead to inaccurate conclusions.

Keywords: connectivity; based method; population connectivity; genetic connectivity; coalescent based

Journal Title: Conservation Biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.