During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened… Click to show full abstract
During ageing, adult stem cells' regenerative properties decline, as they undergo replicative senescence and lose both their proliferative and differentiation capacities. In contrast, embryonic and foetal progenitors typically possess heightened proliferative capacities and manifest a more robust regenerative response upon injury and transplantation, despite undergoing many rounds of mitosis. How embryonic and foetal progenitors delay senescence and maintain their proliferative and differentiation capacities after numerous rounds of mitosis, remains unknown. It is also unclear if defined embryonic factors can rejuvenate adult progenitors to confer extended proliferative and differentiation capacities, without reprogramming their lineage‐specific fates or inducing oncogenic transformation. Here, we report that a minimal combination of LIN28A, TERT, and sh‐p53 (LTS), all of which are tightly regulated and play important roles during embryonic development, can delay senescence in adult muscle progenitors. LTS muscle progenitors showed an extended proliferative capacity, maintained a normal karyotype, underwent myogenesis normally, and did not manifest tumorigenesis nor aberrations in lineage differentiation, even in late passages. LTS treatment promoted self‐renewal and rescued the pro‐senescence phenotype of aged cachexia patients' muscle progenitors, and promoted their engraftment for skeletal muscle regeneration in vivo. When we examined the mechanistic basis for LIN28A's role in the LTS minimum combo, let‐7 microRNA suppression could not fully explain how LIN28A promoted muscle progenitor self‐renewal. Instead, LIN28A was promoting the translation of oxidative phosphorylation mRNAs in adult muscle progenitors to optimize mitochondrial reactive oxygen species (mtROS) and mitohormetic signalling. Optimized mtROS induced a variety of mitohormetic stress responses, including the hypoxic response for metabolic damage, the unfolded protein response for protein damage, and the p53 response for DNA damage. Perturbation of mtROS levels specifically abrogated the LIN28A‐driven hypoxic response in Hypoxia Inducible Factor‐1α (HIF1α) and glycolysis, and thus LTS progenitor self‐renewal, without affecting normal or TS progenitors. Our findings connect embryonically regulated factors to mitohormesis and progenitor rejuvenation, with implications for ageing‐related muscle degeneration.
               
Click one of the above tabs to view related content.