LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling mountain pine beetle (Dendroctonus ponderosae) oviposition

Photo from wikipedia

Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is a significant forest disturbance agent with a widespread distribution in western North America. Population success is influenced by temperatures that… Click to show full abstract

Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is a significant forest disturbance agent with a widespread distribution in western North America. Population success is influenced by temperatures that drive phenology and ultimately the adult emergence synchrony required to mass attack and kill host trees during outbreaks. In addition to lifestage‐specific developmental rates and thresholds, oviposition timing can be a source of variance in adult emergence synchrony, and is a critical aspect of mountain pine beetle phenology. Adaptation to local climates has resulted in longer generation times in southern compared to northern populations in common gardens, and the role of oviposition rate in these differences is unclear. Oviposition rates and fecundity in a northern population have been described, although data are lacking for southern populations. We assessed southern mountain pine beetle oviposition rates and fecundity in a range of temperatures using a non‐destructive technique that included frequent X‐ray imaging. We found that oviposition rate and fecundity vary independently such that a female with high oviposition rate did not necessarily have high fecundity and vice versa. Observed fecundity within the 30‐day experimental period was lowest at the lowest temperature, although estimated potential fecundity did not differ among temperatures. Females at varying temperatures have the potential to lay similar numbers of eggs, although it will take longer at lower temperatures. Southern mountain pine beetle reared in Pinus strobiformis Engelm. (Pinaceae) had a higher upper threshold for oviposition, a similar lower threshold, and slightly greater potential fecundity compared to a northern population reared in Pinus contorta Douglas. A comparison of modeled oviposition rates between the two populations, which could be influenced by host tree, suggests that differences in oviposition rate do not explain observed differences in total generation time. Our oviposition model will facilitate development of a phenology model for southern mountain pine beetle populations.

Keywords: phenology; oviposition; mountain pine; pine beetle

Journal Title: Entomologia Experimentalis et Applicata
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.