LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Motor skill acquisition during a balance task as a process of optimization of motor primitives

Photo by davidhofmann from unsplash

It has been argued that the central nervous system relies on combining simple movement elements (i.e. motor primitives) to generate complex motor outputs. However, how movement elements are generated and… Click to show full abstract

It has been argued that the central nervous system relies on combining simple movement elements (i.e. motor primitives) to generate complex motor outputs. However, how movement elements are generated and combined during the acquisition of new motor skills is still a source of debate. Herein, we present results providing new insights into the role of movement elements in the acquisition of motor skills that we obtained by analysing kinematic data collected while healthy subjects learned a new motor task. The task consisted of playing an interactive game using a platform with embedded sensors whose aggregate output was used to control a virtual object in the game. Subjects learned the task over multiple blocks. The analysis of the kinematic data was carried out using a recently developed technique referred to as “movement element decomposition.” The technique entails the decomposition of complex multi‐dimensional movements in one‐dimensional elements marked by a bell‐shaped velocity profile. We computed the number of movement elements during each block and measured how closely they matched a theoretical velocity profile derived by minimizing a cost function accounting for the smoothness of movement and the cost of time. The results showed that, in the early stage of motor skill acquisition, two mechanisms underlie the improvement in motor performance: 1) a decrease in the number of movement elements composing the motor output and 2) a gradual change in the movement elements that resulted in a shape matching the velocity profile derived by using the above‐mentioned theoretical model.

Keywords: task; movement; motor primitives; movement elements; motor; acquisition

Journal Title: European Journal of Neuroscience
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.