LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distracting stimuli evoke ventral tegmental area responses in rats during ongoing saccharin consumption

Photo by libraryofcongress from unsplash

Disruptions in attention, salience and increased distractibility are implicated in multiple psychiatric conditions. The ventral tegmental area (VTA) is a potential site for converging information about external stimuli and internal… Click to show full abstract

Disruptions in attention, salience and increased distractibility are implicated in multiple psychiatric conditions. The ventral tegmental area (VTA) is a potential site for converging information about external stimuli and internal states to be integrated and guide adaptive behaviours. Given the dual role of dopamine signals in both driving ongoing behaviours (e.g., feeding) and monitoring salient environmental stimuli, understanding the interaction between these functions is crucial. Here, we investigate VTA neuronal activity during distraction from ongoing feeding. We developed a task to assess distraction exploiting self‐paced licking in rats. Rats trained to lick for saccharin were given a distraction test, in which three consecutive licks within 1 s triggered a random distractor (e.g. light and tone stimulus). On each trial they were quantified as distracted or not based on the length of their pauses in licking behaviour. We expressed GCaMP6s in VTA neurons and used fibre photometry to record calcium fluctuations during this task as a proxy for neuronal activity. Distractor stimuli caused rats to interrupt their consumption of saccharin, a behavioural effect which quickly habituated with repeat testing. VTA neural activity showed consistent increases to distractor presentations and, furthermore, these responses were greater on distracted trials compared to non‐distracted trials. Interestingly, neural responses show a slower habituation than behaviour with consistent VTA responses seen to distractors even after they are no longer distracting. These data highlight the complex role of the VTA in maintaining ongoing appetitive and consummatory behaviours while also monitoring the environment for salient stimuli.

Keywords: saccharin; tegmental area; distracting stimuli; ventral tegmental; consumption

Journal Title: European Journal of Neuroscience
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.