Supplementing an earlier analysis of event‐related potentials in extensive motor learning (Margraf et al., 2022a, 2022b), frontal theta‐band activity (4–8 Hz) was scrutinized. Thirty‐seven participants learned a sequential arm movement… Click to show full abstract
Supplementing an earlier analysis of event‐related potentials in extensive motor learning (Margraf et al., 2022a, 2022b), frontal theta‐band activity (4–8 Hz) was scrutinized. Thirty‐seven participants learned a sequential arm movement with 192 trials in each of five practice sessions. Feedback, based on a performance adaptive bandwidth, was given after every trial. Electroencephalogram (EEG) was recorded in the first and last practice sessions. The degree of motor automatization was tested under dual‐task conditions in a pre‐test–post‐test design. Quantitative error information was transported in both feedback conditions (positive and negative). Frontal theta activity was discussed as a general signal that cognitive control is needed and, therefore, was expected to be higher after negative feedback. Extensive motor practice promotes automatization, and therefore, decreased frontal theta activity was expected in the later practice. Further, it was expected that frontal theta was predictive for subsequent behavioural adaptations and the amount of motor automatization. As the results show, induced frontal theta power was higher after negative feedback and decreased after five sessions of practice. Moreover, induced theta activity was predictive for error correction and, therefore, an indicator of whether the recruited cognitive resources successfully induced behavioural adaptations. It remains to be solved why these effects, which fit well with the theoretical assumptions, were only revealed by the induced part of frontal theta activity. Further, the amount of theta activity during practice was not predictive for the degree of motor automatization. It seems that there might be a dissociation between attentional resources associated with feedback processing and attentional resources associated with motor control.
               
Click one of the above tabs to view related content.