LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lack of evidence for the match-mismatch hypothesis across terrestrial trophic interactions.

Photo by 77hn from unsplash

Climate change has led to widespread shifts in the timing of key life history events between interacting species (phenological asynchrony) with hypothesized cascading negative fitness impacts on one or more… Click to show full abstract

Climate change has led to widespread shifts in the timing of key life history events between interacting species (phenological asynchrony) with hypothesized cascading negative fitness impacts on one or more of the interacting species-often termed 'mismatch'. Yet, predicting the types of systems prone to mismatch remains a major hurdle. Recent reviews have argued that many studies do not provide strong evidence of the underlying match-mismatch hypothesis, but none have quantitatively analysed support for it. Here, we test the hypothesis by estimating the prevalence of mismatch across antagonistic trophic interactions in terrestrial systems and then examine whether studies that meet the assumptions of the hypothesis are more likely to find a mismatch. Despite a large range of synchrony to asynchrony, we did not find general support for the hypothesis. Our results thus question the general applicability of this hypothesis in terrestrial systems, but they also suggest specific types of data missing to robustly refute it. We highlight the critical need to define resource seasonality and the window of 'match' for the most rigorous tests of the hypothesis. Such efforts are necessary if we want to predict systems where mismatches are likely to occur.

Keywords: trophic interactions; mismatch hypothesis; hypothesis; mismatch; match mismatch

Journal Title: Ecology letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.