LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Whole-brain metabolic pattern analysis in patients with anti-LGI1 encephalitis.

Photo from wikipedia

BACKGROUND AND PURPOSE Faciobrachial dystonic seizures (FBDS) and hyponatraemia are the distinct clinical features of autoimmune encephalitis (AE) caused by antibodies against leucine-rich glioma-inactivated 1 (LGI1). The pathophysiological pattern and… Click to show full abstract

BACKGROUND AND PURPOSE Faciobrachial dystonic seizures (FBDS) and hyponatraemia are the distinct clinical features of autoimmune encephalitis (AE) caused by antibodies against leucine-rich glioma-inactivated 1 (LGI1). The pathophysiological pattern and neural mechanisms underlying these symptoms remain largely unexplored. METHODS We included 30 patients with anti-LGI1 AE and 30 controls from a retrospective observational cohort. Whole-brain metabolic pattern analysis was performed to assess the pathological network of anti-LGI1 AE, as well as the symptomatic networks of FBDS. Logistic regression was applied to explore independent predictors of FBDS. Finally, we applied multiple regression model to investigate the hyponatraemia-associated brain network and its effect on serum sodium levels. RESULTS The pathological network of anti-LGI1 AE involved a hypermetabolism in cerebellum, subcortical structures, and Rolandic area, as well as a hypometabolism in the medial prefrontal cortex. The symptomatic network of FBDS shown a hypometabolism in cerebellum and Rolandic area (PFDR < 0.05). Hypometabolism in the cerebellum was an independent predictor of FBDS (P < 0.001). Hyponatraemia-associated network highlighted a negative effect on caudate nucleus, frontal and temporal white matter. Serum sodium level had the negative trend with metabolism of hypothalamus (Pearson's R = -0.180, P = 0.342) but the mediation was not detected (path c' = -7.238, 95% CI = -30.947 to 16.472). CONCLUSIONS Our results provide insights into the whole-brain metabolic patterns of patients with anti-LGI1 AE, including the symptomatic network FBDS and the hyponatraemia-associated brain network, which is conducive to understanding the neural mechanisms and evaluating disease progress of anti-LGI1 AE.

Keywords: brain metabolic; network; whole brain; brain; patients anti; anti lgi1

Journal Title: European journal of neurology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.