LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive limitations of white spruce populations to drought imply vulnerability to climate change in its western range

Photo from wikipedia

A cost‐effective climate change adaptation strategy for the forestry sector is to move seed sources to more northern and higher elevation planting sites as part of ongoing reforestation programs. This… Click to show full abstract

A cost‐effective climate change adaptation strategy for the forestry sector is to move seed sources to more northern and higher elevation planting sites as part of ongoing reforestation programs. This is meant to match locally adapted populations with anticipated environments, but adaptive traits do not always show population differences suitable to mitigate climate change impacts. For white spruce, drought tolerance is a critical adaptive trait to prevent mortality and productivity losses. Here, we use a 40‐year‐old provenance experiment that has been exposed to severe drought periods in 1999 and 2002 to retrospectively investigate drought response and the adaptive capacity of white spruce populations across their boreal range. Relying on dendrochronological analysis under experimentally controlled environments, we evaluate population differences in resistance, resilience, and recovery to these extreme events. Results showed evidence for population differentiation in resistance and recovery parameters, but provenances conformed to approximately the same growth rates under drought conditions and had similar resilience metrics. The lack of populations with better growth rates under drought conditions is contrary to expectations for a wide‐ranging species with distinct regional climates. Populations from the wettest environments in the northeastern boreal were surprisingly drought‐tolerant, suggesting that these populations would readily resist water deficits projected for the 2080s, and supporting the view that northeastern Canada will provide a refugium for boreal species under climate change. The findings also suggest that white spruce is sensitive to growth reductions under climate change in the western boreal. The study highlights that population differentiation in adaptive capacity is species‐ and trait‐specific, and we provide a counterexample for drought tolerance traits, where assisted migration prescriptions may be ineffective to mitigate climate change impacts. For resource managers and policy makers, we provide maps where planning for widespread declines of boreal white spruce forests may be unavoidable.

Keywords: change; white spruce; climate change; spruce populations

Journal Title: Evolutionary Applications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.