LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Excessive habit formation in schedule‐induced polydipsia: Microstructural analysis of licking among rat strains and involvement of the orbitofrontal cortex

Photo from wikipedia

Schedule‐induced polydipsia (SIP) is an animal model of compulsive drinking that selects for individual differences and varies across rat strains. The aim of this study was to investigate excessive habit… Click to show full abstract

Schedule‐induced polydipsia (SIP) is an animal model of compulsive drinking that selects for individual differences and varies across rat strains. The aim of this study was to investigate excessive habit formation by analyzing the SIP licking microstructure among rat strains, and to compare the brain areas activated by SIP in different populations. Wistar, Long Evans and Roman High‐ and Low‐Avoidance rat strains were compared using a cluster analysis of 2 main variables, that is, frequency of licking (percentage of interpellet intervals with drinking episodes) and intensity of licking (mean number of licks per interpellet interval), and were found to exhibit high intensity and frequent licking (compulsive drinkers, CD), low intensity but frequent licking (habitual drinkers, HD), and low intensity and low‐frequency licking (low drinkers, LD). The Wistar strain showed a higher frequency and intensity of licking, and had the largest group of CD rats when compared with the other strains. Regarding the acquisition of SIP, CD rats showed a higher intensity of licking when compared with the HD and LD rats. Moreover, c‐Fos quantification revealed that rats in the CD group showed hyperactivity in the lateral orbitofrontal cortex and basolateral amygdala when compared with the LD group. Analyzing the SIP microstructure could be a valuable tool for understanding the role of excessive habit formation in the development of compulsive drinking and its underpinning neurobiological mechanisms.

Keywords: rat strains; excessive habit; habit formation; intensity

Journal Title: Genes
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.