LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Global soil nitrogen cycle pattern and nitrogen enrichment effects: Tropical versus subtropical forests

Photo from wikipedia

Tropical and subtropical forest biomes are a main hotspot for the global nitrogen (N) cycle. Yet, our understanding of global soil N cycle patterns and drivers and their response to… Click to show full abstract

Tropical and subtropical forest biomes are a main hotspot for the global nitrogen (N) cycle. Yet, our understanding of global soil N cycle patterns and drivers and their response to N deposition in these biomes remains elusive. By a meta‐analysis of 2426‐single and 161‐paired observations from 89 published 15 N pool dilution and tracing studies, we found that gross N mineralization (GNM), immobilization of ammonium ( INH4 ) and nitrate ( INO3 ), and dissimilatory nitrate reduction to ammonium (DNRA) were significantly higher in tropical forests than in subtropical forests. Soil N cycle was conservative in tropical forests with ratios of gross nitrification (GN) to INH4 (GN/ INH4 ) and of soil nitrate to ammonium (NO3−/NH4+) less than one, but was leaky in subtropical forests with GN/ INH4 and NO3−/NH4+ higher than one. Soil NH4+ dynamics were mainly controlled by soil substrate (e.g., total N), but climatic factors (e.g., precipitation and/or temperature) were more important in controlling soil NO3− dynamics. Soil texture played a role, as GNM and INH4 were positively correlated with silt and clay contents, while INO3 and DNRA were positively correlated with sand and clay contents, respectively. The soil N cycle was more sensitive to N deposition in tropical forests than in subtropical forests. Nitrogen deposition leads to a leaky N cycle in tropical forests, as evidenced by the increase in GN/ INH4 , NO3−/NH4+, and nitrous oxide emissions and the decrease in INO3 and DNRA, mainly due to the decrease in soil microbial biomass and pH. Dominant tree species can also influence soil N cycle pattern, which has changed from conservative in deciduous forests to leaky in coniferous forests. We provide global evidence that tropical, but not subtropical, forests are characterized by soil N dynamics sustaining N availability and that N deposition inhibits soil N retention and stimulates N losses in these biomes.

Keywords: cycle; subtropical forests; nitrogen cycle; inh4; global soil; soil

Journal Title: Global Change Biology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.