LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using Resin-Based 3D Printing to Build Geometrically Accurate Proxies of Porous Sedimentary Rocks.

Photo from wikipedia

Three-dimensional (3D) printing is capable of transforming intricate digital models into tangible objects, allowing geoscientists to replicate the geometry of 3D pore networks of sedimentary rocks. We provide a refined… Click to show full abstract

Three-dimensional (3D) printing is capable of transforming intricate digital models into tangible objects, allowing geoscientists to replicate the geometry of 3D pore networks of sedimentary rocks. We provide a refined method for building scalable pore-network models ("proxies") using stereolithography 3D printing that can be used in repeated flow experiments (e.g., core flooding, permeametry, porosimetry). Typically, this workflow involves two steps, model design and 3D printing. In this study, we explore how the addition of post-processing and validation can reduce uncertainty in the 3D-printed proxy accuracy (difference of proxy geometry from the digital model). Post-processing is a multi-step cleaning of porous proxies involving pressurized ethanol flushing and oven drying. Proxies are validated by: (1) helium porosimetry and (2) digital measurements of porosity from thin-section images of 3D-printed proxies. 3D printer resolution was determined by measuring the smallest open channel in 3D-printed "gap test" wafers. This resolution (400 µm) was insufficient to build porosity of Fontainebleau sandstone (∼13%) from computed tomography data at the sample's natural scale, so proxies were printed at 15-, 23-, and 30-fold magnifications to validate the workflow. Helium porosities of the 3D-printed proxies differed from digital calculations by up to 7% points. Results improved after pressurized flushing with ethanol (e.g., porosity difference reduced to ∼1% point), though uncertainties remain regarding the nature of sub-micron "artifact" pores imparted by the 3D printing process. This study shows the benefits of including post-processing and validation in any workflow to produce porous rock proxies.

Keywords: sedimentary rocks; post processing; build; using resin; printing; geometry

Journal Title: Ground water
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.