LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatic Generation of Locally Refined Composite Grids for Efficient Solute Transport Modeling.

Photo from wikipedia

Widely used numerical models of solute transport processes in subsurface aquifers are limited to nonlocally refined rectangular, or logically rectangular, structured grids. This presents an unsuitable option to efficient numerical… Click to show full abstract

Widely used numerical models of solute transport processes in subsurface aquifers are limited to nonlocally refined rectangular, or logically rectangular, structured grids. This presents an unsuitable option to efficient numerical simulations maintaining an acceptable level of accuracy. Optimal selection of locally refined cells for efficient solute transport models is challenging to the current generation of numerical models. We present a novel and relatively simple to implement algorithm addressing these shortcomings. This method operates in four steps involving travel times simulations, a grid coarsening stage followed by a selective local grid refinement based on a cell-wise indicator, and a final postprocessing step. The refinement index is the sum of weighted logarithmic distributions of scaled forward and backward travel times. We calculate representative flow and transport properties at the two scales of the composite grid with a flow-based upscaling technique. We present two test problems to demonstrate the performances of this new gridding algorithm. We obtain the most important speedups for composite grids generated with the highest indicator thresholds. When hydrodynamic dispersion effects increase, we obtain less important speedups. An important outcome of this work is that grid design depends on nature and strength of the underlying flow and solute transport processes. Therefore, we suggest developing solute transport workflows integrating this grid generation algorithm as an integral component to build comprehensive and efficient groundwater models.

Keywords: locally refined; solute transport; transport; generation; efficient solute; composite grids

Journal Title: Ground water
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.