LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PPAR-α agonist-containing olive leaf-derived complex induces collagen IV in human skin models.

Photo from wikipedia

INTRODUCTION Peroxisome proliferator-activated receptor (PPAR) agonists are known to modulate the synthesis of dermal lipids and proteins including collagens. Olive (Olea europaea) leaves have been reported to contain PPAR-binding ligands.… Click to show full abstract

INTRODUCTION Peroxisome proliferator-activated receptor (PPAR) agonists are known to modulate the synthesis of dermal lipids and proteins including collagens. Olive (Olea europaea) leaves have been reported to contain PPAR-binding ligands. Collagen IV, a major dermal-epidermal junction (DEJ) protein, degrades with both age and disease. Here, we report the formulation of a novel multi-ligand complex, Linefade, and its effects on collagen IV synthesis. METHODS Linefade prepared from the leaves of Olea europaea contains 2% w/w plant extract solids dissolved in a mixture of glyceryl monoricinoleate and dimethyl isosorbide. In silico docking was performed with PPAR-α (PDB ID: 2P54). Linefade was evaluated for PPAR-α-dependent transcription in a luciferase reporter assay system. Cell viability and collagen IV levels in human dermal fibroblasts cultures were measured using the MTT method and ELISA assay, respectively. Transcriptome analysis was conducted on a full-thickness reconstituted human skin (EpiDermFT) model. Ex vivo cell viability and collagen IV immunostaining were performed on human skin explants. RESULTS In silico docking model of the major constituents (oleanolic acid and glyceryl monoricinoleate) produced a co-binding affinity of -6.7 Kcal/mole. Linefade significantly increased PPAR-α transcriptional activity in CHO cells and collagen IV synthesis in adult human dermal fibroblasts. Transcriptome analysis revealed that 1% Linefade modulated the expression of 280 genes with some relating to epidermal differentiation, DEJ, PPAR, Nrf2 and retinoid pathways. An ex vivo human explant study showed that 1% Linefade, delivered via a triglycerides excipient, increased collagen IV levels along the dermal-epidermal junction by 52%. CONCLUSION In silico modeling and in vitro and ex vivo analyses confirmed Linefade-mediated activation of PPAR-α and stimulation of collagen IV synthesis.

Keywords: ppar; collagen synthesis; human skin

Journal Title: International journal of cosmetic science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.