LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlling the microstructure of lyophilized porous biocomposites by the addition of ZnO‐doped bioglass

Photo by oliverschwendener from unsplash

The study presents the results of the study on porous composite biomaterials obtained using lyophilization method based on polymer solutions: chitosan solution, sodium alginate solution, or polylactide solution, and ZnO-doped… Click to show full abstract

The study presents the results of the study on porous composite biomaterials obtained using lyophilization method based on polymer solutions: chitosan solution, sodium alginate solution, or polylactide solution, and ZnO-doped bioglass from CaO-SiO2-P2O5 system. The properties of zinc ions were used, which have bactericidal, immune-stimulating, and tissue-regenerating functions in the organism. The effects of the polymer type, granulation, and bioglass amount, as well as the amount of solvent on composite microstructure, were studied. SEM-EDS technique was used to visualize and describe the surface results occurring after incubation of composite in the Simulated Body Fluid (SBF). The selected method of preparation, used substrates, and the process conditions resulted in porous composites of the open, connected pore structure. It was proved that composite microstructure may be controlled by the appropriately selected amount of bioglass in relation to the polymer and its appropriate grain sizes. The morphology of the obtained composites is also affected by the amount of the solvent in lyophilizated dispersions. It was proved that bioactivity in composite material is induced by bioglass because after SBF incubation the surface layer is enriched with Ca and P, what may lead to a gradual formation of apatite layer. The obtained results enabled selection of the composites for further in vitro studies concerning cytotoxicity and antibacterial activity.

Keywords: controlling microstructure; zno doped; doped bioglass; bioglass; microstructure

Journal Title: International Journal of Applied Ceramic Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.