Technological advances in laboratory automation are now well understood and applied as they considerably improved the speed and robustness of haematological laboratory data, in the companion fields of blood analyzers… Click to show full abstract
Technological advances in laboratory automation are now well understood and applied as they considerably improved the speed and robustness of haematological laboratory data, in the companion fields of blood analyzers and flow cytometry. Still rather confidential is the field of microfluidics, mostly confined so far to academic settings and research laboratories. The literature in the field of microfluidics is growing and applications in hematology range from cell counting to flow cytometry, cell sorting, or ex vivo testing. A literature search allows to identify many innovative solutions developed to master the specific physics of fluid movements in microchips. Miniaturization also dwells on findings that have emerged from different areas such as electronics and nanoengineering. This review proposes an overview of the major principles guiding developments in microfluidics and describes a necessarily limited and nonexhaustive series of specific applications. Readers are strongly encouraged to consult the documents referred to in the references section to learn more about this world knocking at our door and possibly liable to revolutionize our profession of hematology biologists in a not so far future.
               
Click one of the above tabs to view related content.